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DYNAMICS OF VARIABLE MASS SYSTEMS

ABSTRACT

This report presents the results of an investigation of the effects of mass loss on the

attitude behavior of spinning bodies in flight. The principal goal is to determine whether

there arc circumstances under which the motion of variable mass systems can become

unstable in the sense that their transverse angular velocities become unbounded.

Obviously, results from a study if this kind would find immediate application in the

aerospace field. "

The first part of this study feann_s a complete and mathematically rigorous

derivation of a set of equations that govern both the translational and rotational motions of

general variable mass systems. The remainder of the study is then devoted to the

application of the equations obtained to a systematic investigation of the effect of various

mass loss scenarios on the dynamics of increasingly complex models of variable mass

systems.

It is found that mass loss can have a major impact on the dynamics of mechanical

systems,includinga possiblechange inthe systems stabilitypicture.Factorssuch as

nozzle geometry, combustion chamber geometry, propellant's initial shape, size and

relative mass, and propellant location can all have important influences on the system's

dynamic behavior.The relativeimportanceof theseparameterson-system motion are

quantifiedin a way thatisusefulfordesignpurposes.
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CHAPTER 1

INTRODUCTION

1.1 Background

Studies of free and forced motions of spinning rigid bodies of various geometries

have been, and continue to be documented in great detail in the literature. Such studies

have led to the development of important scientific instruments (gyroscopes, etc.) and to

the concept of spin stabilization of modern spacecraft. By contrast, variable mass systems

have receivedrelativelylittleattentionintheliterature,though theyplayan equally

importantroleinmodem technology,especiallyinspace flight.The expression"variable

mass system,"asused inthecontextof thisdocument, referstomechanical systems that

loseand/orgainmass while inmotion. Examples of such devicesabound inthe

engineeringliterature.They includecomplex systems such as aircraft,rockets,and moving

robotspickingup or lettinggo of objects,as well as simplersystems such aswater

sprinklersystems or an inflatedballoonwith airlossthroughone or more holes.

Variablemass systems can be dividedintotwo classes:thosewith continuousmass

variation and those with discrete mass variation. Rockets, for example, fall in the

continuous variable mass class; and, robots picking up or releasing objects, or a moving

vehicle dropping off some of its payload in discrete chunks, fall in the discrete variable

mass system class. Because systems with discrete mass variation can be analyzed using

well known principlesof multi-rigid-bodydynamics, thefocus of theanalysispresentedin

thisstudyison systems with continuouslyvaryingmass.
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It is clear fi'om intuition that when the net change in mass 0_ a system, as well as its

mass variation rate are small, it is unnecessary to account for the change in mass in the

study of the system's motion. For example, automobiles arc in fact variable mass systems,

yet, no one takes mass variation into account in handling and performance studies of

ordinary automobiles. The reason is that the rate of mass variation is viewed as negligible

and rightly so. On the other hand, a system that undergoes a substantial change in

mass, especially if this occurs in a short period of time, will definitely require that mass

variation be accounted for in the study of its motion; otherwise, any predicted response of

the system will be far removed from its true behavior. The focus of this study is on the

determination of the impact of mass variation on the dynamic behavior of systems with

substantial change in mass

..

1.2 Early Studies of Variable Mass Systems

Scientific study of variable mass systems has been in progress for more than two

hundred years; so developments in this field have a long though sporadic history. The

earliest recorded work on the dynamics of bodies with varying mass was performed in the

18th century by BemouUi (1738). He was then studying the forces acting on a liquid jet

propelled hydroreactive ship- an ancient application of the principle of jet propulsion. He

actually derived what may be referred to as the equation of motion in this special case. The

Czech scientist and inventor, George von Buquoy (1781-1851), was the first to pose the

general problem of the dynamics of systems with varying mass. _ 1812, he obtained his

"motion formula" for such systems, and went on to solve a large number of examples

based on his formula, von Buquoy's work can be said to mark the birth of the theory of

the dynamics of systems with varying mass. In the mean time, William Moore worked out

his mathematical theory of rocket motion in England in 1813, and, in 1819, Poisson rook a



rathermodern approach and derived the equations of motion of variable mass systems

based on Lagrange's general formula. In their book published in 1856, Talt and Steele

included a section on mass variation. They postulated that mass variation produced small

continuous impacts or impulsive forces on systems, and thus resulted in continuous change

of velocity. This work was followed, several years later, by that of Meshchersldi, whose

work spanned the period 1897 to 1904. He essentially laid the foundation for the

development of variable mass dynamics as a special discipline of mechanics. He devoted

his 160 page master's thesis to exploring a large array of issues relevant to variable mass

dynamics m from the derivation of equations of motion to the solution of a series of

problems in the field. All of these early investigations of variable mass systems were

limited in one way. They were only concerned with the study of the translational motion of

such systems. The issue of rotational motion of such systems was not addressed until the

mid 1940's.

The second world war brought with it a resurgence of interest and activity in the

dynamics of variable mass systems, mostly in connection with rocketry. At this time,

wanslational motion of such systems was relatively well understood and the main focus of

research in variable mass dynamics began to shift to the attitude motion of such systems.

Some of the scientific giants of this new era include Rosser et al. (1947), Gantmacher and

Levin (1947), Rankin (1949), Ellis and McArthur (1959). The equations of rotational

motion derived by these investigators are quite similar, and have forms similar to Euler's

equations for rigid bodies, with extra terms that account for mass variability. Thomson

stands out as a major contributor to this field through his book (1961) and the companion

papers (1965, 1966). He derived several versions of the equations of motion of variable

mass systems and his work gives a great deal of physical insight into the behavior of

rockets. In his study of the transverse attitude motion of a non-spinning axisymmetric

rocket, he showed that transverse rotation rate depends on the ratio43f the distance of the

system mass center from nozzle exit, to the transverse radius of gyration of the rocket. If



thisratio is greaterthan one (the most common case), the transverse angular velocity

decreases with time; and when the ratio is less than one, the transverse angular velocity

increases with time. Warner and Snyder (1968) brought some refinements to Thomson's

work and pointed out how various simplifying assumptions can lead to drastically different

motion predictions. Meirovitch (1970) moved work on variable mass systems one step

further by considering the impact of mass variation on variable mass rockets.

4

1.3 The Star 48 Problem

Flaws in current understanding of the dynamics of variable mass systems was

brought to light in the early 80's, when several space missions with upper stages powered

by the Star 48 solid rocket motor were observed to exhibit anomalous behavior.

Unexpected and unexplainable rapid growth in cone angle occurred near the end of the

motor bum. The output of a typical rate gyro mounted on one of such flights is shown in

Fig. 1. We note from this figure that the flight is uneventful until about two thirds into the

motor bum, when there begins an exponential growth in transverse rate, and thus in

nutation angle. The Star 48 is the first solid rocket motor known to produce such anomaly,

and it differs from its predecessors mainly in its much larger size and the existence of a

submerged nozzle construction.

The Star 48 problem sparked another flurry of investigations [ Eke (1983), Meyer

(1983), Mingori and Yam (1986), Flandro et al. (1987), Cochran and Kang (1991)] into

the behavior of variable mass systems, and is one of the main factors that motivated this

work.

In his Ph. D dissertation work, part of which was supported by this project, Wang

(1993) [ see also Eke and Wang (1995)] modeled rocket type variable mass systems as a



simple cylinder of varying mass, and produced elaborate closed-form expressions that

describe the attitude motion of such systems for various burn geometries. The study

showed that certain propellant bum scenarios can actually cause the transverse rates of

short and large rocket systems to diverge in a manner similar to that observed on the Star

48 flights.
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Fig. 1.1 Transverse Rate vs. Time for a Typical Star 48 Flight

1.4 This Work

This study is an extension of Wang's work. Like Wang's work (1993), this study

utilizes modern mathematical tools in the study of the dynamics of variable mass systems,

with the general intent of making valuable contributions to the field and enhancing current

understanding of the dynamic behavior of such systems.



Mostinvestigatorsthathaveattemptedthederivationof dynamicalequationsfor

variable mass systems have relied heavily on heuristics. In the next chapter, we present

complete and mathematically rigorous derivations of both the translational and rotational

equations of motion of variable mass systems. The remainder of the study applies the

equations of chapter 2 to increasingly complex models of various classes of variable mass

systems, extracting and presenting a wealth of new information on the attitude dynamics of

such systems.

Throughout this document, equations and figures are numbered in the form (a.b),

where the first number a represents the chapter in which the item appears, and the second

number b is the actual item number within the chapter. To refer to an item, the number b is

used if the referencing is done in the same chapter in which the item appears; otherwise, the

full label (a.b) is utilized.

6
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CHAPTER 2

EQUATIONS OF MOTION
OF VARIABLE MASS SYSTEMS

This chapter begins with a description of the model used to characterize variable

mass systems in this study. This model is general enough to represent a wide variety of

physical systems that gain or lose mass while subjected to general three-dimensional

motion. The complete equations of motion for both rotational and translational motion of

such systems are derived using one of the methods of analytical dynamics - Kane's

formalism (Kane and Levinson 1985). The merit of this approach is its efficiency. It

produces the equations of transitional and rotational motion in one mathematically rigorous

step, and makes it possible to clarify a lot of conceptual issues in the derivation, that have

been very difficult to do in previous work. The equations of motion that are derived are

then compared with those obtained by Wang (1993) and others, who used the Newton-

Euler approach.

2.1 Model Description

The system of interest is shown, in its most general form, in Fig. 1. It is

determined by the closed surface, B, and its contents. The contents of B at any given

instant can be solid (R), fluid (G), or a mixture of both. B and its contents undergo general

three-dimensional motion in space, and matter can flow continuously in and out of B
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during this motion. For example, parts of R can "dissolve" into G by combustion or other

processes; and, some of such products of combustion can then flow across the boundary

B. At any given instant of time, only the surface B and whatever happens to be inside it at

the instant constitute "the system" for that instant. Thus, the system under consideration

here evolves continuously, both as regards its location in space, and its material

constitution - and hence its mass. We will use the symbol S to designate this system.

N

Fig. 2.1 VariableMass System
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The derivation of equations of motion for a system such as the one described above

is not as straightforward as it would normally be for a system of particles and/or rigid

bodies of constant mass. The reason is that the basic principles of dynamics, such as

Ncwton-Euler equations and Lagrange's equations are only valid when applied to a definite

set of particles or rigid bodies. Two choices are then possible at this point. One, is to seek

or develop new formalisms that would be valid for variable mass systems; another solution

is to model variable mass systems in a way that allows them to be viewed as constant mass

systems, and thus make them amenable to treatment by existing principles of dynamics.

This latter approach is the choice adopted in this study.

2.2 Equation Formulation Strategy

Before formulating the dynamical equations for the system of Fig. 1, we start by

temporarily restricting the system in some important ways. First, we assume that the closed

boundary, B, of the system maintains a constant shape, and thus encloses a region of

constant volume at aU times. In other words, B is taken to be a rigid massless shell. As

further help in the equation derivation process, we introduce the concept of constant mass

systems associated with the variable mass system under study.

We consider once more the system as shown in Fig. 1, keeping in mind that the

outer shell is now of constant shape. At some instant of time, t1, there is a definite set of

material particles inside B. Let us assume that this set of particles is contained in a closed

elastic container, B1, that is identical to B at time tj. In fact, we take the viewpoint that BI

has always enclosed the exact particles that ended up in B at time tl, and that B_ will

continue to delimit these particles. Obviously, subsequent to time tj, the shape of B_ will

deviate from that of B if it is to continue to delimit the particles that were in B at time t_,



since some (or even all) of these particles may have exited B. Similarly, prior to time t_, the

shape of B 1 was quite different from that of B, since only some, or maybe none, of the

particles inside B1 then were also inside B. The shape of B_ is thus seen to vary with time,

becoming identical to, and containing the same amount of matter as B at time h- We note

however, that B_ and its contents maintain the same mass at all times. We shall represent 131

and its contents with the symbol S_, which will be referred to henceforth as the constant

mass system associated with the variable mass system S at time h. Similarly, we can def'me

$2, $3, etc., as constant mass systems associated with S at times h, tj, etc. Furthermore,

we assume that there exists a special subset of the particles of S that remains within B

throughout the interval of time of interest in this study. In fact, this set is further assumed

to constitute a rigid body, R, that is rigidly connected to B.

The equations of motion of any one of the constant mass systems described above

can be formulated using any of the classical approaches (Newton's Second Law,

Lagrange's Equations, Kane's Equations, etc.) since each system is of constant mass.

Suppose, for example, that Kane's formalism is applied to the constant mass system _ and

yields

+ = ..... nk) (2.1)k r k=0 (r 1 2,

10

where/7, is the generalized active force on the system, F,* is the generalized inertia force,

nk is the number of degrees of freedom of _, and the subscript k simply indicates that we

are dealing with the system _. Assuming that the motion of the fluid particles of _, relative

to the rigid part of this constant mass system is known, _ has six degrees of freedom

nk =6.

Eqs. (1) have the explicit form
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u,=fl, ql, _/6, (2.2)uI.....thi, r=1,2 ....,6

where t is time, q)and u) are, respectively, the r - th generalized coordinate and generalized

speed of the constant mass system ,_,. In other words, the time derivative of a given

generalized speed of _,, is a function of generalized speeds and generalized coordinates of

S., and possibly time. Eqs. (2) can be supplemented with kinematical equations of the form

.°

q, = g, [ul ..... ut, ql, ,q_, r =1,2 ..... 6 (2.3)

Eqs. (2) and (3) constitute the equations of motion of _, and can be written as

=/lr _Yl,'",Yl2, ,j r=1,2,....12 (2.4)

where y,' is a generalized motion variable (generalized speed or generalized coordinate) of

Next, we imagine that the set of differential equations (4) is solved for y: as

functions of time. We note then that y_kl,._ are the generalized motii_n variables for the

variable mass system S at time t = t,. We now consider some quantity v e that characterizes

the motion of _k in some way, and is therefore obtainable from the generalized motion

variables y_t, or is simply one of them. An example of a good candidate for _ is the

magnitude of the velocity of the mass center of _. Another example is a component of the

angular velocity of the rigid body B that is a part of _. We will call _ a characteristic

motion variable for _k" Once y_ is known for all times, v k is known, and can be plotted as a
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function of time. Now, suppose we solve Eqs. (4) for various values of k, and thus

determine Xt for several constant mass systems; and all of these V.t (k = 1, 2 ..... m) are

plotted as functions of time on the same scale, but staggered for clarity as shown in Fig. 2.

Now, we consider the motion characteristic, v, of the variable mass system S, that

corresponds to v k. If, for example, v_ represents the speed of the mass center of _, then v

would represent the speed of the mass center of S, keeping in mind that different material

particles make up S at different times. Because the dynamic behavior of S at some instant

of time tj is, in fact, the dynamic behavior at time t] of _., it is clear that v is given as a

function of time by the curve labeled F in Fig. 2; or, more precisely, the projection of F

onto the plane gz-t (see v in Fig. 2). The task before us can be viewed as the determination

of an efficient method for generating the differential equations whose solutions lead directly

to the curve v of Fig. 2. The route to accomplishing this task will now be delineated.

We consider once more Eqs. (4), which are the equations of motion for the constant

mass system _L,. First, we note that this equation has the same form for various values of

k. The only items that change with k are system parameters such as mass and moments of

inertia. Setting t = tk in Eqs. (4) yields a set of algebraic equations that produce y t/_._

(r=1,2,...,12); these quantities are equal respectively to y/tj), Y2(t,) .... y12(tj), the time

derivatives of the corresponding generalized motion variables for S evaluated at time t = tk.

One of these (or some function of these) represents the slope of cul"ve v of Fig. 2 at t = t_

and is plotted as point Pk in Fig. 3. The above process can be repeated for The system S t at

time tj, the system _ at time t2, etc., and the relevant results are used to complete the plot

of Fig. 3. The equations of curves such as P in Fig. 3 are the equations of motion of the

variable mass system. Since the points of such curves axe generated from the equations of

motion of the various constant mass systems, the equations of motion of the variable mass

system S, have exactly the same form as the equations of motion of a typical constam mass

system. However, to apply such equations correctly to variable mass systems, care must

be taken to interpret mass and inertia parameters correctly. At any given instant of time,



these parameters take on their values for the corresponding constant mass system for the

instant under consideration.

13

Fig. 2.2 Characteristic Variables

2.3 Dynamical Equations

To obtain the dynamical equations of the full variable mass system, S, all we need

to do is to derive the dynamical equations for a typical constant mass system. We will now

do this using Kane's equations given in Eq. (1).
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p,

Fig. 2.3 Graph ofy,(O versus time

2.3.1 Useful Kinematical Quantities

In order to keep the mathematical developments that are going to follow relatively

compact, and to avoid symbol definitions that are interspersed throughout the document,

we give and define, in Table 1, a set of symbols that will be used repeatedly in the

remainder of this document.

A typical constant mass system, _, is shown in Fig. 4. A possible choice of

generalized speeds, Ur, for the system is

¢a.br(r =1,2,3)

u, /v .br_3(r 4, 5, 6)
(2.5)



Table 2.1 - List of Symbols

A symbol in boldface type signifies a vector, and a boldface symbol with a tilde above it

represents a dyadic. Several of the symbols defined here are shown in Fig. 4.

15

• N- an inertial reference frame

• B - the boundary of the variable mass system

• R - the solid portion of the variable mass system

• S - the variable mass system enclosed by its boundary B

• S* - mass center of the system

• O - an arbitrary point of R

• P- a generic point of the system

• v- velocity of P in an inertial reference frame

• co - angular velocity of R in an inertial reference frame

• a - acceleration of P in an inertial reference frame

• Vr / _ - velocity / acceleration of P relative to R

• v ° / a ° - velocity / acceleration of O in an inertial frame

• vS* / as* - velocity/acceleration of S* in an inertial frame

• v_* / a_*- velocity / acceleration of S* relative to R

• bi 0=1,2,3) - a dextral set of mutually perpendicular unit vectors fixed in R

• r- position vector from O to P (see Fig. 3)

• r* - position vectcx from O to S* (see Fig. 3)

• a subscript, Ur, attached to any v or c0 indicates the corresponding partial velocity

• p - position vector from S* to P

• I,- central inertia dyadic of the system
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N

b

Fig. 2.4 Constant Mass System,

By virtue of (5) above,

¢.0 = Ulbl + u2b2 + u3b3 (2.6)

and

v S* = U4bl + usb2 + u663 (2.7)
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The velocity of a generic point, P, of the system is

v =v°+co×r+Vr (2.8)

Because the motion of the fluid particles relative to R is assumed to be described by known

functions of time, the partial velocities [see Kane and Levinson (1985)] of P are given by

.o

-- V_r +VUr O)Ur × r
(2.9)

Now, thevelocityof the system mass centercan be expressedas

vS" = vO + cox r* + vS" (2.10)

and so, the corresponding partial velocities are

S _

= v°r_ + tour x r*VUr (2.11)

From (11),

v_, = Vu, - cou, x r" (2.12)
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so that (9) and (12) give

S °

VUr "- VUr + t.OUr × p (2.13)

where p is the position vector from S* to P.

The acceleration of the generic point, P, of S is

a=a°+ otx r+ cox(cox r)+ 2 oax Vr + ar (2.14)

S_fl_y,

aS" = aO + ¢x × r" + co x (c0 × r') + 2 o× vrS"+ a_" (2.15)

(14) and (15) can be combined to give

a=aS*+otxp+t.ox(oxp)+2o3x(vr-vrS*)+(ar-_ *) (2.16)

2.3.2 Generalized Inertia Forces

The contribution of matter contained in an elementary parallelepiped located at P

(see Fig. 4) to the generalized inertia forces of the system _ is
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(Fr)e = -dm a-Vu,. (2.17)

where dm is the mass of matter inside the paraUelepiped. (13), (16) and (17) yield

= s*(F;)p -dm[aS*+o_xp+co×(mxp)+2cox(v,-v,.S*)+(a,.-a; )].v_;

S*
-dm[aS*+(x×p+cox(coxp)+2mx(vr-vS*)+(a,-ar. )]" (COu,.× p )

(2.18)

Hence, the generalized inertia force on _ corresponding to the generalized speed, Ur, is

F;=_Vur. p aS* + s* s*+axp+tex(texp) 2rex Vr-V r + ar-a r dV

S* X (0_ X X + a r - a r-{our- p px +otxp+m p)+2m Vr-V r
dV (2.19)

We note here that the integrals in (19) are volume integrals that are taken over the region

enclosed by 1_. We recall that I_ always contains all the material particles found inside B

at time tk. I_ coincides with B at the instant t_, but is different from B at any other time.

We now return tO the determination of the generalized inertia force, F;. From
.,

Fig. 3 and the definition of mass center,
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fB pdm = fB (r-r*)dm = 0
k k

(2.20)

Similarly,

f_ _ s.
k k

(2.21)

Using (20) and (21) together with the facts that

f_ [_×_×_]_ _._
k

(2.22)

and

(2.23)

(19) is reduced to

×

(2.24)

Hence, for r = 1, 2, and 3,
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(2.25)

and,for r = 4, 5, and 6,

F;=-m vSu_.a S* (2.26)

2.3.3 Generalized Active Forces

The force per unit volume, F P, acting on the generic particle P of the system can be

written as

F/'= Fee + F/P (2.27)

where F_ comes from forces external to the system, and F/t' is from the internal forces

acting on P. The generalized active force, Fr, for the system has the form
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+

(2.28)

Now, if the internal force exerted on any particle P of the system _._ by another particle Q

of _ is assumed to act along the line connecting P and Q, then

fB F_i dV=O (2.29)
k

and

(2.30)

In that case, the generalized active force can be written as

s*. F + C0Ur" M (2.31)Fr = Vu r

where F is the resultant external force on the system, and M is the sum of the moments of

all the external forces on the system about the system mass center. (5) and (31) then give
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and

F r = O)Ur.

$* .

Fr = Vur F

M for r= 1,2,3 (2.32)

for r = 4, 5, 6 (2.33)

2.3.4 Equations of Motion

Recalling that Kane's equations have the form given in (1), we now combine (25)

and (32) to obtain the equation of attitude motion as

(2.34)

Similarly, the equation of translational motion comes from (26) and (33), and is

m a s* = F (2.35)

At this point, there are two main obstacles that prevent (34) and (35) from being

useful as given above. First, the motion of fluid particles within I_ was assumed known.

This means that both the velocity and acceleration fields within I_ are known as functions

of time. In reality, none of these functions is known, but reasonable guesses can be made



for the velocity field within B; that is, the velocity distribution inside ]_ for the instant t =

t_, when the constant mass system coincides with the variable mass system S. On the other

hand, we have no handle over the velocity distribution of any particles outside B; and some

such particles would normally he within ]k at instants of time different from tt. The other

problem is that we have no way of estimating the acceleration field - not even within B.

To circumvent these problems, two imlx_rtant measures are taken. One is that

attempts are made to convert all accelerations that appear explicitly in (34) and (35) to time

derivatives of velocity. If done properly, this would take care of the second problem

above. The other measure is that ways are found to convert any volume integral that

contains a velocity term, and is taken over the region 1_ to a volume integral over B, where

velocities can be estimated. This measure would resolve the first problem. We now show

how these measures can be applied to Eq. (35).

Substituting for as* from (15), (35)becomes

In Io . ( ]-Fa +axr +cox mxr" xv_*+a_*
(2.36)
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It is convenient to express (36) as

m

,.

(2.37)

We then re-write the last term on the left hand side of (37) as
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Rdvr Rd

LkP ardV = fBk P --_" dV =-_fBk P VrdV
(2.38)

where the left superscript, R, indicates the reference frame in which the time derivative is

taken. Next, we substitute (38) into (37) and evaluate the new expression at time tk, when

_-k is identical with S, and obtain ..

m
•

a°+otxr " p v r dV = F(tk)+2. p(mxv )dV+ ,
t=tk t=tk (2.39)

Because the last term on the left hand side of (39) contains a time derivative outside the

integral sign, the limit of the integral cannot he changed to B as was done for the previous

tenn. We are thus faced with the problem of taking the integral of an expression containing

a velocity term over a region in which the velocity field is not known - the trn'st problem
..

discussed above. Fortunately, this dilemma can be resolved by means of the Reynolds

Transport Theorem, which gives in this case,

i_I_d-tfB ] [RdfB fs ]P "rdV = _- k p Yr dV + p Yr (V, " !11)d_

k t = t k t = t k

(2.40)

where S is the surface area of B, and n is a unit vector normal to B and pointing outwards.

Eqs. (39) and (40) thus give
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0('x')"l
t=tk t=tk

+ p + (,,..)_ =E(,_
Jt = tk t= tk

(2.41)

where m is the mass of_ at ILrne t_; that is, the mass of S at time t_. Because (41) has the

same form for all values of tk, the equation of translational motion for the full variable mass

system is

(2.42)

The equation of rotational motion for the variable mass system is obtained in a

similar way from (34). Ftrst, we have that

(2.43)
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Then we invoke Reynolds Transport Theorem once again to convert (43) to

t=t k

,o

I I
t= tlc

(2.44)

Thus, the equation of rotational motion becomes [from (34) & (44)]

k

(2.45)

where the inertia dyadic that appears in (45) is that of matter that is within B at the instant

under consideration.

The vector equations of motion, (42) and (45), obtained through the application of

Kane's equations, are identical to those obtained by other authors [ Meirovitch (1970),

Wang (1993)] using Newton-Euler formulation.



2.3.5 Another form of the Equation of Attitude Motion
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Another very useful form of the vector equation of rotational motion can be

obtained as follows. First, we go back to the equation of attitude motion of a representative

constant mass system as given in Eq. (34), and consider the expression

Rd Rd

A-- -_ife k [p × (W x p)] din= ---_fBk p [p ×(_× p)] dV
(2.46)

This expression can be expanded in the following way :

A=-_ k[px(toxp)]dm= -_ [px(wxp)]dm
k

= fBk[vrX(t_x p)] dm + fB k [p x (txx p)] din+ fBk[PX(OX vr) ] dm

(2.47)

The last team on the fight hand side of (47) can be added and subtracted from (47), then by

using the following equality

Iv,x(cox p)]-[p x(cox vr)]= [cox (v,x p?] (2.48)

we have
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k k
(2.49)

On the other hand, A, as given in (47), can be evaluated at t = t_ and expanded using
,,

Reynolds Transport Theorem to yield

( "' /A_,_=_f,,[p×_=×p)],,,,,+J',,,[p×_=×p)](v,.n)_
t= tk

'"(T.,,,)+J's"[p×_°×p)](v,.n),_}
It = tk

[(Rail ¢o+i.ot+fsp[p×(mxp)](v,.n)aS }
=[I-dT ) "='k

(2.50)

We then have, from (49) and (50), that

dV -((Rd]).ei+fsp[px(o_xp)](Vr'n)dS+fakp[o_x(p x Vr)]dV/
ffBk' P P _a)X Vr)It = tk" dt

(2.51)
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Eqs. (34) and (51) lead to the following alternate form of the vector equation of attitude

motion:

Rd

.b

(2.52)
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CHAPTER 3

EFFECTS OF MASS VARIATION

The equations of motion derived in chapter 2 [see (2.42), (2.45) and (2.52)] are

quite complex; and very little progress can be made with these equations without some

simplifying assumptions to reduce their complexity. In this chapter, these equations are re-

examined. The significance of each of the terms is evaluated, and, the circumstances

under which some of these terms can be dro_ are explored. The goal is to arrive at a set

of equations that capture the salient features of the system under study, and that are

nevertheless simple enough to render further analysis tractable.

3.1 Translational Motion

The vector equation of translational motion [see (2.42)] is reproduced hewe as

(3.1)
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This equation can be _-writ_n

m[.°oxr'..x(.xr')1 (3.2)

where

and

Fc=-2 fB P(mXvv)dV

ed

rL=- _?fBpv,aV

FT=- fsPVr(V,.'n)dS

(3.3)

(3.4)

(3.5)

If v, is identically zero everywhere, then F c = FL = Fr = 0, and we recover the equations

of translational motion for a rigid body. Thus, mass variation appears to augment the

"external forces" on an "equivalent rigid body" by three terms. Fc is often referred to in

the literature as the Coriolis force, since it derives from the Coriolis component of the

acceleration. FL is the rate at which the system's linear momentum relative to B decreases

with time because of particle motion inside B. FT represents the rate at which relative linear

momentum is lost across the boundary B, and is often referred to as the thrust vector in

rocket applications.

If those particles of the system that can move relative to B are allowed to move

within B but do not cross the boundary B, then F T becomes zero. F T would be non-zero

but negligible if either a very small percentage of the system's particles is allowed to cross



B, or those particles that cross B do so at very slow rate. In other words, the thrust vector

can be neglected whenever the amount of matter that is lost or gained per unit time is small.

What matters is the rate, not the total amount of matter lost or gained.

Note that we can use Reynold's transport theorem to expand the Coriolis force into
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where

and

prdV
pv, dV=- 2 mx_

=-2m _ prdV+ pr(vr.n)dS =Fcl+Fc2

Rd_Fcl =-2 cox _ prdV

Fc2 =- 2 ¢o x _ p r (Vr.n) dS

(3.6)

(3.7)

(3.8)

There arc situations where Yr Can be considered negligible inside the boundary B

but not at an exit from B. An example is an inflated balloon with a hole. Gas motion

inside the balloon is hardly noticeable while gas exit velocity at the hole is substantial. In

cases like this, Ft. and the first term of F c (Fc_)are negligible, but Fc_ as well as the thrust

vector survive. As a matter of fact, this is not an unreasonable assumption for praclical

systems such as rockets, and can provide a way of rendering the equations of such systems

tractable, since the details of internal gas flow can be neglected. Even if v, is not negligible
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within B, but the particles within B can attain some type of steady state in their motion

relative to B, then F L and Fcj are once more negligible. After ignition, rocket systems

quickly attain an approximate steady state, and so, F L and Fcl can be ignored for such

systems.

In summary, the vector equation of translational motion for variable mass systems

can, in many cases be reduced to

m a°+ ot x r* + m x (a) x r')] = F + FT +Fc2 (3.9)

where F is the external force, F r is the thrust vector, and Fc2 is part of the Coriolis force

and is given by (8). F c and F r can be dropped completely only when the rate of mass loss

is negligible.

3.2 Rotational Motion

Two forms of the vector equation of attitude motion were developed in chapter 2

[(2.45) and (2.52)1, and are reproduced below.

-_fBt (P x vr) dV + fs P (P x Vr)(Vr'n) dS = M+ P

(3.10)
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(3.11)

Both of these equations reduce to rigid body rotational equations if Vr = 0 within B as well

as on B. Thus (10) can be written as

I- a+texl-te=M+M c+MH+M T (3.12)

where

(3.13)

is the Coriolis moment,

Rd

MH = --_fB p(p x vr) dV
(3.14)

represents the rate of decrease of the system's relative angular momentum inside B, and
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M,--fsp(pxq(v,.) s (3.15)

is the rate of loss of relative angular momentum across the bounda_, and is also equal to

the moment of the thrust vector about the system mass center.

In those situations where it is reasonable to assume that the motion of the fluid

phase relative to the solid phase has axial symmetry, and when there is no whirling motion,

we have that

fBk p(pxv,.)dV = Is p(pxv,,)dg- 0
(3.16)

This is so because, for every particle P of the system with position vector p and relative

velocity Vr, there exists another particle P' of position vector p' and relative velocity V'r

such that the vectors pXVr and p'Xv'rhave the same magnitude but oPtx_site directions.

And, since axisymmetry also implies that the immediate neighborhoods of P and P' have

the same mass density, Eq. (3.16) follows. This equation immediately leads to

M. = M r = 0 (3.17)

We arrive at the same conclusion for systems where Vr can be considered negligible inside

the boundary B but not at an exit from B, such as rockets. M x is also negligible for steady

state relative motion of the fluid particles.

From (10) and (11) the Coriolis moment can be expanded to
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kp mx x (3.18)

The last term on the right hand side of (18) vanishes for axisymmetric motion as well as for

negligible internal flow. The second term on the right hand side of (18) is often referred to

as the jet damping moment, because it has been shown [see Dryer (1963)] to have

attenuating effects on the angular rates in some types of rocket systems. To evaluate this

surface integral, it is necessary to know the geometric shape of those parts of the boundary

where particles are allowed to exit or enter the system, as well as the velocity profile at

these locations. This moment is thus very much dependent on the system's geometry. In

the case of rockets, for example, the longitudinal dimension of the combustion chamber

(for solid rockets) as well as the exit nozzle radius have much to do with the impact of this

term on the system's attitude motion.

The first term on the right hand side of (18) captures the contribution of inertia

variation. We thus conclude that jet damping moment and the moment due to the changes

in inertia properties have dominant effects on the attitude dynamics of the system. The

relative importance and the interaction between these two moments, essentially determine the

character of the attitude dynamics of variable mass systems. There is advantage in using

the reduced form of (11) for the study of rotational motion. If the assumptions of

symmetric and/or negligible internal motion are made, the most "troublesome" terms will

have dropped out. The only term in this equation that would contain Vr is a surface integral

over B. Vr'n is zero everywhere on the surface of B except at those places where fluid

particles can enter or leave the region delimited by B (the nozzle exit plane in the case of
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rockets). In general, Vr.n can be approximated relatively well at ..these locations; hence the

surface integral can in fact be evaluated in closed form.

In the study of the dynamic behavior of variable mass mechanical systems, the most

important forces appear to be the thrust vector and the Coriolis force. The jet damping

moment and the moment due to inertia variation are the dominant moments. These

quantities should be included in any dynamic studies of variable mass systems to ensure

that meaningful predictions can be made from the analysis.
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CHAPTER 4

ATTITUDE MOTIONS

OF A VARIABLE MASS CYLINDER

4.1 Introduction

In this chapter, we begin to narrow the scope of our study to an important and

useful class of variable mass systems - space rockets. We start this process with an in-

depth study of the attitude motions of a variable mass system that is initially a solid right

circular cylinder, which loses its mass continuously through combustion as it moves

around in space. The cylinder problem is a very important and useful problem for several

reasons. First, it models rocket-type systems in a simple enough way that the equations of

motion become relatively tractable. Generally, space vehicles are designed to be more or

less axisymmetric is shape, and, a cylinder is actually a good - albeit rough -

approximation for such systems. Hence, a thorough study of the variable mass cylinder

problem is a useful exercise in that it provides a means of performing tractable analytical

studies of rocket-type systems, and can lead to great insight into the dynamic behavior of

this class of variable mass systems.



The idea of using a cylinder to study the a_tude behavior of variable mass systems

was originated by Eke and Wang (1995). In their work, they solved completely in closed

form, theequationsof motion of a variablemass cylinderforseveralburn scenarios.They

then extracted useful qualitative as wcU as quantitative information about the attitude

behaviorof thecylinderfi'omtheanalyticalexpressionsof thesolutionsof theequationsof

motion. The approach here is different. The strategy here is to develop an analytical

method that yields a wealth of fundamental information about the behavior of the system

without actually solving the equations of motion. The main motiv..ation for this approach is

that such a strategy can be applied to more complicated models of variable mass systems

for which closed form solutions cannot be found.
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4.2 Attitude Equations for the Cylinder

Consider a variable mass system of the rocket type that is initially a right circular

cylinder as shown in dotted lines in Fig. 1. This system is given an initial angular velocity

0%, and is then allowed to move freely in a torque-free environment as it loses its mass

continuously through combustion or similar Imx:esses. The intent is to perform qualitative

and quantitative studies of the attitude motions of such a system. To begin, we define as
..

control region, the space enclosed in dotted lines in Fig. 1. Matter within this region at any

given instant is considered part of the system at that instant.

The attitude motions of such a system are governed by Eq. (2.52), which can be

simplified, as discussed in chapter 3, by making the following assumptions: (a) the

burning process proceeds in such a way that the solid unburned part of the cylinder remains

symmetrical about the original cylinder axis at all times; (b) the fluid products of

combustion move in an axisymmetric manner relative to the solid unburned part of the
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cylinder;, (c) whirling motion of the products of combustion relative m the solid portion of

the system is negligible. With these assumptions, (2.52) reduces to

(_/ [. C°x4/-n)_sM=I'a+_xI'_+ t dt ]'°_+ fBP x
(4.1)

. :,,_:_ii;i:i:i-::!S!7:!:!:!-!.".....................................;::"...."'-.

----i
::::::::::::::::::::::::::::_ ......................-..................... • /

Fig. 4.1 Variable Mass Cylinder

The axisymmetry assumption allows us to express the instantaneous central inertia dyadic

of the system as

"I= l(blbi +b2b2)+ Izb3b 3
(4.2)
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where bi, b2, I)3 are unit vectors fixed in B and directed as shown in Fig. 1; and I and I,

are respectively the transverse and axial central inertia scalars of the system. If the inertial

angular velocity of B at some general instant of time is taken to be

¢0= (.0xb1 + o_b2+ (.0zb3 (4.3)
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then, the angular acceleration is

IX= (oxb 1 + _oyb2 + co.zb3 (4.4)

and the various terms of Eq. (1) become

x i . m= (tz- t)a (a bl -

(_t i ) " ca = i (o_ l + o_b 2) + Jz _b 3

(4.5)

(4.6)

(4.7)

In order to evaluate the last term of (1), an assumption must be made concerning the

velocity field of the fluid particles of the system at the surface of the control region. Here,

we assume that the vector Vr is zero everywhere on B except at one of the ends of the

cylinder--the right end, say. And there, "

vr " n = u(r)
(4.8)

because of our axisymmetry assumption. If it is further assumed that
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then

u(r)= u = constant (4.9)

fB "o{P×(O_P)(Vr'n)] dS =-m (e2+-_-R2)(a_ z+ _b 2)+ 21--R2_b3

(4.10)

where m is the instantaneous mass of the system, and l(t)is the distance of the mass center

from the right face of the shell, B. By substituting (5), (6), (7) and (10) into (1) and

setting M to zero, we obtain the scalar equations that describe the torque-free attitude

motion of the variable mass cylinder;, and they are

,,,,(,,

(4.11)

(4.12)

(4.13)

4.3 Attitude Stability

Multiplying (11) by cox, (12) by (0y and adding the two resulting equations leads to

I I&_-(to2x+ 0_y)+[ i- 6a (£ 2 + R 2/4) ](0)2 + 0_y)=0 (4.14)



We nowlet

0 = iz- riaR 2/2 (4.15)
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= i- rh(l2 + R 2/4) (4.16)

and

o)t = (o2x+ o_y (4.17)

(13) and (14) can then be written more compactly as

do)z

I_--_-+ 0 _ = 0

and

I d¢_ + 20 ¢ot=O

(4.18)

(4.19)

If the functions 0(t) and ¢(t) are known, (18) and (19) can serve as basis for the

determination of the essential features of the rotational motion of the variable mass cylinder.

We note that these equations are uncoupled, so that the spin rate has no effect on the

wansvcrse angular rates. We also note that ff O(t) = O, then the spin rate remains constant at

its initial value throughout. Similarly, if ¢(t) = 0, the magnitude of the transverse angular

velocity does not change during the burn.

Equations (18) and (19) lead to

.--.o.xpE-I (4.20)
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[ f  'dtlo_t= _toexp -2 l(t) ]
(4.21)

or

c0xy = o)xy 0 exp
(4.22)

where foxy = _ is the magnitude of the transverse angular velocity, and the subscript 0

indicates initial value; that is, value at ignition. We shall use the subscript .o to indicate

values at burnout.

Looking back at (15) and (16), we observe that each of the functions 0 and q_ is

made up of two parts. For example,

- _1 + _2 (4.23)

where

_1 = l (4.24)

and

= - th (t 2 + R 2 / 4) (4.25)

Because we are concerned here with a situation where mass is being lost, both 1[? and rh

are negative. Hence, _1 remains negative throughout the burn while _ is positive

throughout. Thus, _ can be positive, negative or zero. _1 is contributed by the change in



system transverse inertia, and because it is always negative, it will tend to cause ¢Oxy to

diverge [see (22)]. On the other hand, 02 is, in this case, the so-called jet damping term,

and it does in fact attenuate ¢0xy by virtue of the fact that it is always positive. Although 0t

is determined by the bum geometry of the cylinder, 02 depends on the size of the cylinder

as well as the velocity distribution across its exit plane. All the statements made above

about O(t) apply equally to O(t) since (15) and (16) have the same form, and (20) is similar

to (22).
..

It is possible to extract important qualitative information about the attitude motions

of the system from a detailed examination of the functions 0(t) and 0(t). From (20) and

(22), it is clear that for 0(t) and (_t) > 0, both oh and oxy approach zero from any initial

conditions. On the other hand, for 0(t) and _(t) < 0, both oh and taxy diverge. Profound

changes in angular velocity can occur when variations are made in 0(t) and _(t).

To make further progress with our study of the attitude hehavior of the variable

mass cylinder, we will now proceed with a close study of the functions 0(t) and _(t).

These functions require that the system mass, inertia scalars and some geometric properties

be known as functions of time; and these parameters can be determined if the burn scenario

is known. We will therefore consider, as did Eke and Wang(1995), four burn scenarios :

the uniform burn, the end burn, the radial or centrifugal burn, and the centripetal or anti-

radial burn. In uniform burn, the assumption is that the cylinder is ignited simultaneously

everywhere inside it at time to. It then burns in the same uniform manner everywhere, so

that the external dimensions remain the same throughout, but the density of matter within

the cylinder decreases uniformly in the same manner everywhere within the cylinder. The

density is thus the same function of time everywhere inside the cylinder, and the products

of combustion are expelled at one end of the cylinder. An end burning cylinder burns from

one of its ends to the other, in such a way that the intermediate shape of the system is

always a cylinder of the same radius but decreasing length. Once more, the products of

combustion are expelled from one of the ends - the burning end. In radial burn, the axis of

46
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the cylinder is ignited at time to, and the system then burns radially outwards in such a way

thattheintermediateshape isa cylindricalpipe. Counter-radialor centripetalburn isthe

reverseof theradialburn. The cylinderisignitedatitsperiphery(butnot theends) and

burnsradiallyinwards,with theintermediateshape lacinga cylinderof constantlengthbut

of decreasing radius.

4.3.1 The Uniform Burning Cylinder

-I- -i U

Fig. 4.2 Cylinder in Uniform Burn

We now considerthe caseofa cylinderinuniform burn with uniform velocity

profileattheexitplane,as shown inFig.2 above. With thedimensions shown in the

figure, the inertia scalars are, in this case,

I= m (R2/4 + h2/3 ) (4.26)

and
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nencc

Iz = m R2/2 (4.27)

(4.28)

and

From (15) and (29), we have that
|, = lil R2/2

0(t) = 0

(4.29)

(4.30)

at all times, and so, the spin rate, ok, will remain constant at its initial value.

From (16) and (28), and recalling that t in (16) is the same as h in Fig. 2 for this case,

O(t) = - 32-fia h 2 > 0 (4.31)

Because ¢(0 > 0 at all times during the burn, the magnitude of the transverse angular

velocity, arxy, decreases exponentially to zero.

4.3.2 The End Burning Cylinder

Fig. 3 shows the dimensions and intermediate shape of a cylinder in end bum. The

auxiliary spatial coordinate z is employed to characterize unburned propellant inertia

properties, including mass, moments of inertia and the location of center of mass. The

mass and inertia properties and their time derivatives are
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m=2p_R2z (4.32)

fia=2p_R22 (4.33)

I = m (R2/4 ÷ z2/3) (4.34)

(4.35)

Iz = m R2/2 (4.36)

iz = rh R2/2 (4.37)

L h

•---- 2 h-z----_
..

U

Fig. 4.3 Cylinder in End Burn

Furthermore,
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l = (2h-2z) +z =2h-z (4.38)

so, from (16) and (38),

_(t) = rh ( R2/4 + z2 )- lh[ (2 h - z )2 + R2/4 ]

= thh2[ 4(z/h ) -4]
(4.39)

At ignition t = to and z = h, so that

= 0 (4.40)

At burnout t = t**and z = 0; hence

¢** =- 4 rh h2>0 (4.41)

From the mass continuity equation, we also have

rh=-pgR2u<0 (4.42)

Based on the assumption of uniform velocity profile at the exit pla,l.e, we conclude that th is

constant dtLring the time interval [ to, t**]. We also know that _r is negative in this interval.

From (39), we have that

dO/dt = 4 h th _ > 0 (4.43)
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betweenignition and burnout. Thus, ¢(t) increases monotonically from 0 to the positive

value given in (41). We have a situation where q)(t) has the form shown in Fig. 4.

¢(t)

_t

Fig. 4.4 The shape of _(t) for End Bum

We conclude from (40), (41) and (43) that the transverse angular rate, c0xy, stays

approximately constant during the initial phase of the burn, then decreases exponentially to

zero.

As for the spin rate, (15) and (37) indicate that 0(t) = 0 forall t, so that the spin rate

is again constant.

Having established that the transverse angular velocity of an end burning cylinder is

always damped, our next task is to examine the effect of the cylinder's initial geometric

configuration on the lateral response. To accomplish this task, let us define

W = _t) / I(t) (4.44)

It is clear from (22) that this factor actually governs the speed with which the transverse

angular speed approaches zero from any initial value. The larger the magnitude of _P, the

higher the rate of decay of lateral motion.

For end bum, "
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_p=_=fia(4hz-4h 2)

I m (R2[4 + z2/3 )
(4.45)

By virtue of (32) and (42), (45) can be rewritten as

_F= 2u(1 -Z/h) (4.46)
z[1/4(R/h_ + 1/3(Z/h_]

To compare the behavior of cylinders of the same length but different initial external radii,

we allow R to vary while keeping z, h and u invariant. A close inspection of (46) indicates

that increasing R/h results in smaller values for _F. Hence, the transverse angular velocity

magnitude, 0Jxy, converges more slowly as the ratio R/h is increased. In other words, the

transverse motion of prolate cylinders in end bum is highly dahaped while that of oblate

cylinder is only very slightly damped. In the limiting case, as R/h --_ **, _F = 0, the

motion is totally undamped as in the torque-free motion of a rigid cylinder. We conclude

then that the amplitude of lateral oscillation of a variable mass cylinder in end bum can be

influenced by the choice of its initial shape. Fig. 5 is obtained by numerical integration of

(22) and demonstrates all the above properties. ..

4.3.3 Radial Burn

We recall that in radial or centrifugal burn, the cylinder starts burning on its axis,

and the burn propagates radially outwards with time. The intermediate configuration of

unburned propellant is a hollow cylinder, as shown in Fig. 6, and the mass and inertia

properties in terms of auxiliary spatial coordinate r have the form
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Fig. 4.5 Transverse Angular Rate for End Burn
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Fig. 4.6 Cylinder in Radial Burn
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m =20 hl_(R2-r 2 } (4.47)

I = m [1/4(R2 + r2) + h2/3] (4.48)

Iz= m (R2 + r2)/2 (4.49)

Hence

rh=-4phnrf (4.50)

It is relatively easy to show that

(4.51)

and

i7 =m r2 (4.52)

To look at the behavior of the spin rate, we examine

0(t) = Iz- (rh / 2) R 2 = rh a2[ ( r/R) 2 - 1/..2] (4.53)

Assuming that at time t = 0, r - 0, we have

0(t) I t = 0 = - rh R2/2 > 0 (4.54)
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and at the end of the burn ( t --_ too, r = R),

0(t) ] t _ t** = ril R2]2 <0 (4.55)

From (53), we have that

dO/dt = 2 fia r f < 0 (4.56)

between ignition and burnout. Because r varies from 0 to R in the time interval [ 0, t**] and

from the physics of the problem, it is clear that f" > 0 in the given interval.

We thus have a situation where 0(t) has the form shown in Fig. 7

o(t)

.°

Fig. 4.7 Shape of 0(t) for Radial Burn

The switchover point, t*, at which the sign of 0(t) changes from positive to negative is

obtained by setting 0(t) = 0 in (53) :

r/R = __ = 0.707 (4.57)
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This implies that the spin rate decreases in the first stage of the bum, when r / R < 0.707,

but increases exponentially in the later phase of the burn when r / R > 0.707; a fact that is

clearly support_ by the plot shown in Fig. 8. This plot is obtained from numerical

integration of (20) for centrifugal bum.

0.8

0.6
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1

r/R

.?

Fig. 4.8 Spin Rate Curve for Centrifugal Bum

We now discuss the evolution of the magnitude of the transverse angular velocity,

foxy.

_(t)=Z-rh(12+g2/4)=fnR2[(1/2)(r/R)2-(2/3)(h/R)2-1/4] (4.58)

Hence

 (t)lt= 0 =4,0> 0 (4.59)



57

and

,..=th a211t4-(2 t3)(h/a ] (4.60)

From (58),

d_/dt =rhrf <0 (4.61)

The sign of 0-* depends on what can be described as the cylinder's "shape factor"- the ratio

of the initial value of its diameter to its length. Hence, whether _xy is bounded or

unbounded depends on this shape factor. To determine the value of R / h that separates the

"stable" region of _xy from the "unstable" region, we set 0(t) to zero in (60), and obtain

R / h - ¢KT-'J -- 1.63 (4.62)

Relevant "pictures" for _t) are shown in Fig. 9.

O(t)

1.63 I

I

_ t

Fig. 4.9 Shape of _(t) for Radial Bum
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Hence, the magnitude of the u'ansversc angular velocity of a cylinder in radial burn always

decreases with time in the early phases of the burn. If the ratio of the unburned cylinder's

diameter to its length (shape factor) is less than that of 1.63, the decrease of _xy continues

all the way to burnout. On the other hand, if the cylinder's shape factor is greater than

1.63, then there comes a time during the burn when o)xy levels off, and then starts

increasing exponentially through burnout. The initial shape of'the cylinder thus has a

critical effect on the cylinder's lateral attitude motion for radial burn. Pencil-shaped

cylinders will tend to be stable in radial burn while hamburger-shaped cylinders will tend to

be unstable.We noteherethatthesame shape factorthatdeterminesstabilityor instability

in radialbum was shown to influencethe rateof convergence of t0xyfor end-burning

cylinders.

Itwould be usefultodeterminetheonsetofinstabilityof O_xyfor cases where R /h

> 1.63. This can be done by determiningthe value of r/R at which the sign of 0(0

changes from positiveto negativein(58).We thushave,from (58),that

+I (4.63)YR[,=0 V3 R, 2

So, the onset of instability for O)xy depends again on the shape factor. Once a value is

specified for the shape factor (R / h), the value of r / R at the beginning of instability can be

determined. For example, for

2 I
R_ 5 r

0.913
= 0.744

= o 0.707

(4.64)
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Weconclude, from (64), that (Oxy begins to diverge much earlier for cylinders with higher

values of the shape factor (fat and short cylinders) than for cylinders with lower values of

R / h. Numerically obtained plots of the transverse angular velocity are shown in Fig. 10,

and are totally consistent with the above inferences. Furthermore, the above analyses

captttre a great deal more of the vital characteristics of radial burn than do these plots and all

previous work on the cylinder.

0.4

0.2

0
0

unstable region

Gable region

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

r/R

Fig. 4.10 Transverse Angular Rate for Radial Burn
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4.3.4 Centripetal Burn

In centripetal bum, the cylinder bums radially inwards without changing its length.

The intermediate shape is a solid cylinder of diminishing radius, as shown in Fig. 11. In

this case, we have that

rn = 2 p h _ r2 (4.65)

and

I_, = m r2 / 2 (4.66)

I=m(r2/4+h2/3) (4.67)

!!iiiiii!iiii !i_iiii!i!iiiiiiiiii!iiiiii!iii:iiili!ii:i!il

iiiii__ii!i!_ii!iiiiiiii!ii_iiiiiiii__i!i__i_iiiiii_ii__ii!__iiiii___!!!!!!i!!!!!!!!!!!

Fig. 4. I 1 Cylinder in Centripetal Bum



61

The time derivatives are

_h=4phnrf (4.68)

l, = rh rz (4.69)

and

i = rh ( r2/2 + h2/3 ) (4.70)

For a study of the spin rate, we have

e(t) : |z-t1 / 2){th R 2) = rh (r2- R 2 / 2) (4.71)

00 = rh R2 / 2 < 0 (4.72)

e. =-_h(R2/2)>0 (4.73)

and from (7I),

d0/dt = 2 rh r f > 0 (4.74)

since f- < 0 in this case. We thus have a situation where 0(t)has the form shown in Fig.

12
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0(t)

.°

Fig. 4.12 Shape of 0(t) for Centripetal Burn

Hence the spin ram increases h-tidally, attains a peak value then de,creases rapidly with the

burn. The time of attaining the peak value of the spin rate corresponds to 0(t) = 0. That is

r/R = 1/_-= 0.707 (4.75)

This trend is validated by the plot of Fig. 13 below.
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Fig. 4.13 Spin Rate of C_ntripetal Burn [Numerical Solution]



To assess the evolution of the transverse angular velocity magnitude, we find

_t) = I-rh(t 2+R2/4)=rn R2 [(1/ 2) (r / R) 2-(2/3)(h/R) 2- 1/4] (4.76)
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which is exactly the same as (58) for radial bum.

¢_0= rh a2[1/4-(2/3}(h/R) 2] (4.77)

¢p_.=-rh R2[1/4 +(2 / 3)(h/R)2] > 0 (4.78)

and from (76)

d_/dt = ria r f > 0 (4.79)

From (77), we determine that t_o = 0 when R / h = 1.63, _P0> 0 for R / h < 1.63, and

_0 < 0 for R / h > 1.63. We conclude from all of this that (a) as long as the ratio of the

cylinder's initial diameter to its length is less than 1.63, the transverse angular velocity

magnitude decreases as the bum progress; (b) if the ratio R / h is greater than 1.63, the

magnitude of the transverse angular velocity increases initially until it reaches a peak value,

then it decreases with time for the reminder of the bum. Thus foxy never really becomes

unbounded for centripetal bum. These facts are demonstrated below in Fig. 14.

Our findings so far indicate that the stability of rotational motion of a variable mass

cylinder depends on two factors : the bum pattern and the cylinder's shape factor. Both the

spin rate and transverse angular velocity are bounded for all shape factors when the

cylinder is subjected to uniform, end, or centripetal bum. For radial or centrifugal bum, the

spin rate is always unbounded, while the transverse angular speed is bounded for the shape



factor (R / h) that are less then |.63, and unbounded for shape factors that are greater than

1.63.

All the results obtained in this section arc totally consistent with, and augment

considerably, earlier results by Eke and Wang(1995).

64

1.4, , i t i ! i ! .... i ; '

l __"_'" , :............. ', •........... ,.............. i

...................................................................................
........................................................................

° ol..............i.................................................................
0 0. I 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 -r/P,

Fig. 4.14 Transverse Angular Rate of Centripetal Bum [Numerical Results]

4.4 Time Dependence of Motion and Inertia Properties

Up to this point, all variables and parameters of interest in this study have been

def'med or determined as functions of the auxiliary variable z or r. This approach turned

out to be a very astute and efficient analytical strategy. Through this choice, we have been

able to avoid some of the myriad problems encountered by previous investigators of the

dynamics of variable mass systems. For example, practicaUy all previous investigators



worked directly with time as independent variable. Hence, to make progress with the

equations of motion [ for example (11)-(13)], it was necessary to specify the time

dependence of the mass (m), the location of center of mass (t) and moments of inertia (

I, Iz ). These investigators simply made assumptions such as linear mass variation -

m = m0- a t, and made "reasonable" guesses for the coefficients. They made similar

guesses for l, I and Iz. The problem is that these inertia quantities are interrelated; a fact

that is generally not correctly reflected in the guesses for the independent time functions

assigned to these quantities. All such difficulty is avoided by the clean analytical scheme of

judiciously introducing the auxiliary variables z or r, as done in this study.

Although avoiding the explicit use of time in our analysis so far has been quite

beneficial from analytical point of view, it is in fact still desirable to know how the angular

rates and even the inertia properties vary with time. For example, this enables us to

compare analytically predicted trends with experimental results, obtained through on-board

instrumentation. In this section, we show how some of the results obtained so far can be

converted to time functions.
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4.4.1 End Burning Case

We now reexamine some of the results obtained for the end burning cylinder.

From (33) and (42), we have that
._.

_:=-u/2 (4.80)

or
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(4.81)

which leads to

z = - (u / 2) t + h (4.82)

The inertia properties can now be converted to time functions simply by substituting (82)

into their expressions. Thus, from (32) and (82)

m = 2 p _ R2 z = 2 p x R2(h-lu t)= mo+fiat (4.83)

where

mo = 2 p _ R 2 h (4.84)

and th is as given in (42). Similarly,

I=m( R2/4 + z2/3)=(mo+fiat)[R2/4+( h-ut/2)2/3]

=Io+Pt-Qt2+S t3

(4.85)

where

(4.86)

P= rh(_+ h 2) (4.87)

Q = 2L- fia h u (4.88)
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and

S =1-_-2 rhu2 (4.89)

The value of t**,i. e. the burnout time, is obtained by setting z = 0 in (82) :

L.=2h/u (4.90)

which is independent of the radius of the cylinder. The instantaneous transverse central

radius of gyration, k, is given by

I=mk 2 (4.91)

So, fi'om (85)

R_ 2 2k 2 + hZ_hu (4.92)

Since

(4.93)

k2 = k_-h_t t +-_t 2 (4.94)

For the time interval 0 < t < 2 h / u, k 2 is a decreasing quadratic function of time.

At burnout
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k_ = R2/4 (4.95)

The axial moment of inertia is

Iz=_m R2 = 2LR2(m o +fiat) (4.96)

and the axial radius of gyration is a constant. Since fia and u am constants, we see that the

transverse moment of inertia is a cubic function of time while both the axial inertia and the

mass are linear functions of time for the end bum assumption.

4.4.2 Centrifugal Burn

For centrifugal bum, we have, from (47), that

rn =- 2 p h _ d(r2) -
dt p_R2u (4.97)

Hence

d(:)=R2u
dt 2h

(4.98)

Integrating both sides over appropriate limits, we have

r2=R2ut (4.99)
9h
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Hence,

m = 2 p h n( R 2- r2 )= 2 p h _ [R2-(R2 u t}/(2 h)] = mo + fiat (4.100)

i=mlRZ+r2 +h21
4 3/

=Io+Bt+At 2

=(mo+fiat}(4R2+8R--_h t+h2 }3
(4.101)

where

Io = mo (R2/4 + h2/3) (4.102)

A = (fia R2 uY(8 h) (4.103)

B= fia h2/3 (4.104)

Since both A and B are negative, it is clear from (101) that I is a decreasing quadratic

function of time. Note also that

i=B+2At<0 (4.105)

From (49)
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+R2utI - ml  ÷r l-  mo÷m0tR2)
=Izo+2At 2

(4.106)

and

where

IT=4At<O (4.107)

Izo = ½ mo R 2 (4.108)

Thus, Iz is also a decreasing quadratic function of time.

It is straightforward to show that the radii of gyration are given by

k2=k_+ RiCh t (4.109)

and

kz2= k2zo + 4I_h t (4.110)

where

(4.111)

and

(4.112)

So, k 2 and kz2.are both linearly increasing functions of time.
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Now, the value of burnout time t.. is obtained by setting r = R in (99). Hence

(4.113)

and

3
(4.114)

k_=R 2 (4.115)

4.4.3 Centripetal Burn

In the case of centripetal burn, similar analyses lead to

r2 = R 2- R2u t
7h

(4.116)

2.h
t**----

U
(4.117 )

m --too + rh.t (4.118)

I=Io+Ct-At 2 (4.119)

with

(4.120)



72

I=C-2At (4.121)

Iz= Izo + D t - 2 A t2 (4.122)

where

D=rhR 2 (4.123)

Hence, both I and Iz are decreasing quadratic functions of time.

The radii of gyration can also be shown to be given by

k2=k_ -R2u .t
Rh

(4.124)

and

kz2= k2zo-ai_h .t •: (4.125)

Both k 2 and k2 are decreasing linear functions of time. We also have that

l_ = h2/3 (4.126)

and

k_** = 0 (4.127)

In conclusion, we observe that for the three cases examined, the cylinder mass is a

linear function of time and the bum duration is the same for all cases. For the end burning

cylinder, I is a cubic function of time, while k 2 is a quadratic function of time; for

centrifugal and centripetal bums, I is a quadratic while k 2 is linear in time. All of the inertia
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parametersare decreasing functions of time except for centrifugal bum where the radius of

gyration incl"e_ases with time.



74

CHAPTER 5

MOTION OF AXISYMMETRIC BODIES WITH
MASS LOSS

In the previous chapter, the important problem of the attitude stability of rocket

systems is initiated, with such systems idealized by a right circular cylinder. In particular,

the effects of mass loss for various burning patterns are emphasized.

In this chapter, another step in the study of the attitude motions of rockets is taken

by considering a more sophisticated model as shown in Fig. 1 below. The system

investigated here differs from the cylinder model in two basic ways : (i) the system is

modeled as a general axisymmetric system ( not just a cylinder), and includes a cylindrical

solid propellant grain as well as a constant mass, non-propellant portion; (ii) a nozzle

arrangement is also included. The new system can be reduced to the cylinder model by

setting the mass of the invariant part to zero.

The objectives in this chapter are similar to those of the previous chapter;, we are

interested in the angular rates of the system, and how they are influenced by mass loss.
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//////

U

Fig. 5.1 Axisymmetric Solid Rocket System

5.1 Governing Equations

The system under consideration in this chapter is shown in Fig. 1, and consists of

two main parts, S and F. F represents the solid propellant of a typical rocket system. It is

assumed to be rigid and cylindrical. S is the main part of the system excluding fuel and

includes the payload. S is assumed to be rigid and axisymmetric, and maintains the same

mass throughout. Both S and F have the same axis of symmetry, so that the mass canters

S* of S, F* of F and B* of the combined system, all lie on the common axis of symmetry

z. The system loses mass continuously through a planar portion of its surface that we shall

refer to as the nozzle exit plane, and that is located at the right end of the system in Fig. 1.

At any given instant, the overall system will consist of everything that is bounded by the

external boundary of S and the nozzle exit plane.

System dimensions are characterized by the symbols given in Fig. 1. Ms

represents the mass of the invariant part, S, and mf is the instantaneous mass of the fuel, F.

The origin of the coordinate axes x, y, z is located at, and moves with, the composite mass



center B*, such that the z-axis is always aligned with the symmetry axis, and the x and y

axes have no rotation relative to S. The solid propellant, F, is assumed to maintain an

axisymmetric configuration throughout its bum, so that the central inertia matrices for S

and F are diagonal. Externally applied moments, thrust misalignment effects, aerodynamic

and gravitational moments are assumed to be of relatively minor importance during

burning, and are thus neglected. The system is thus assumed to move in a torque-free

environment. The motion of the particles of the products of combustion as they cross the

exit plane is taken to be such that the velocity distribution perpendicular to the plane is

uniform. If it is further assumed that the motion of gas particles inside the combustion

chamber is symmetric relative to the z-axis, and that whirling motion of the gas particles

within the system is negligible, the vector equation of attitude motion for the system is

reduced from (2.52) to

(BdI) .o + fs p[p × (c0 × p)] (vr.n)dS = 0i. + o)x i.o)+ at (5.1)
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Because of the symmetry assumption, the central inertia dyadics for F, S, and the

overall system B can be written respectively as

If = If(bxbx + byby) + Jfbzbz (5.2)

I$ = I, (bxbx + byby) + Jsbzbz (5.3)

and
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= I (bxbx + byby) + Jbzbz (5.4)

We also have that

I =I,, + If + M_ b 2 + mf a 2 (5.5)

and

J = Js + Jf (5.6)

Note also that the distances a and b of Fig. 1 are given respectively by

(5.7)

b = mf C
(M, + mr)

(5.8)

As propellant mass is lost, the system mass center B* moves forward toward S*.

Combining (5), (7) and (8), we have

I =Is+ If + _t c 2 (5.9)

where
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mf Ms
(5.10)

Letting the inertial angular velocity of S be

¢D= fox bx + ¢a)yby + (J_ bz .. (5.11)

theinertialangularaccelerationis

a = coxbx + _y by + Ct)zbz (5.12)

(4)and(12)thengive

.?

I" Ot = I ((bx bx + (_y by) + J (bz bz (5.13)

and (4), and (11) lead to

O)x i. co = (J - I) col (COybx- fox by) (5.14)
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We alsohavefrom (4)and(11)that

(_-}c0 = | (COxbx + coy by)+ J a)z bz (5.15)

Finally, because of the simplifying assumption made so far,

I p r ×(to x r)(vr.n)dS =- rhf[(£2 + R21/4)(COxbx + COyby)+ (R2/2)COzbz](5.16)
B

where _e is the axial distance between F* and the nozzle exit plane. By combining (1) and

(13)-(16), we have that the scalar equations of attitude motion for the system are

Irbx+( J-I )oyCOz+[ l-thf(l 2 + R2/4)]C0x=0 (5.17)

_,-(J-_)__ +[i-mt(_:+_/4)].=0 (5.18)

(5.19)

where I and J are given by (9) and (6) respectively, and [see (9)]
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i=if+_tc2+2gc_: (5.20)

j = .if (5.21)

5.2 Non-Dimensional Equations of Motion

In this section, we render the equations of attitude motion very compact through the

introduction of a set of dimensionless parameters. This allows us to perform further

studies of these equations in a way that provides great insight into the most important

factors that govern the behavior of the system. We start by introducing the non-

dimensional time. For the system of Fig. 1, the instantaneous mass.of the cylindrical

propellant is

mf = mr0 - m t (5.22)

where

= - rh (5.23)
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andis takento beapositiveconstantthatrepresentstherateof fuel consumption.We

assumethat t = 0 at ignition, when mf = mfo, and that at burnout, t = tb and mf = 0.

Hence, (22) gives, at burnout,

tb = mr0/_ . (5.24)

We define a dimensionless time, x, as

x=t= m t=ott (5.25)
tb mf0

Thus, z= 0 at ignition, and x = 1 at burnout. Also, the quantity ot l has the dimension of

time and is an appropriate scaling factor for time.

We have from (25) that

= ot d (5.26)dx

and the equations of motion, (17)-(19), can be re-written as

-(J- I) 0_ oz- 0t[I'- m' (_2 + R21/4)] Ox

Iot
(5.27)
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r /A

,.; : (J- I)COx_- a Lf- m' (gz + R_/4j] oh ' (5.28)

_= - [J'- m' R21/2] 0_ (5.29)
J

where the prime indicates derivative with respect to "1:, and the inertia properties I, J and

mf are assumed to be expressed in terms of "t:.

In the next phase of the non-dimensionalization process, we use mr0 and R as scale

factors for mass and length respectively, so that the scaring factor for inertia scalars

becomes mm R 2. It is also convenient to introduce, at this point, the following non-

dimensional parameters :

]tl = ks / R, _'2 = ksz / R, _t = Ms / mo, 8 = L / R t

1_=R1/a, _1 =gl/R, _ = *2/R /
(5.30)

where ks and k,z are, respectively the transverse and axial radius of gyration of S.

We now divide the numerator and denominator of the right hand side of (27) by

mm R 2 to obtain



_ ____/_ I +

O_= mr°R2 m_R2taY°z- mr°R2 mr°R2
I 0_

mfo R 2

(5.31)
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If both sides of (31) are divided by or, we get

_=-(_-l)o._,COz -{i'-mf°L_R! +-4"]} _t (5.32)

Similarly,

(5.33)

and

(_' m'
-' -meo T _z
%=

(5.34)
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where COx,Oy, O)zare non-dimensionalized angular velocity components, and I, J are
,,

normalized inertia scalars.

Following a strategy similar to that utilized in chapter 3, we let

(5.35)

and

o(_)= F_-m- _2
mfo 2 (5.36)

m E

Next, we multiply (32) by COxand (33) by % and add :

_,r (5.37)

(34) becomes

d_z=- _. _ (5.38)
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(37) and (38) lead to

n i

cot = O_toexp (5.39)

and

(foI J
(5.40)

where

As in the case of the cylinder, the sign of the functions _ and 0 determine whether

the angular rates grow or decay with time. A positive sign implies decay and a negative

sign signals divergence.

From Fig. 1

mr0 = Pro _ R2 L (5.42)
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where Pro is the mass density ofF. Continuity equation gives

_0 R1
rh = fiat =- _ = 2 x O u(r) r dr (5.43)

We recall here that p is the density of the fluid products of combustion at the exit plane.

For a uniform velocity profile at the exit plane, u(t) is constant, so that
"I

ria = rhf=-_ =- p 7t R2t u (5.44)

We then have an alternate expression for ot as

(5.45)

where rl is the ratio p / Of0. Note also that

R
11

(5.46)
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To make further progress with our analysis, we will now focus attention on two specific

burn scenarios for F that are closest to what occurs in real rockets.

5.3 Centrifugal Burn

The fuel burns radially outwards in a symmetric manner (see Fig. 2) so that F*

remains fixed in S; however, B* still moves toward S*. From Fig. 2,

mf=pfxL(R2-r 2) (5.47)

'_2

C

Fig. 5.2 Centrifugal Burn
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From (47) and (44)

dmf

dt
__=_pfxLd(r2) dt =-pxR_u (5.48)

Hence

fo r2 _o t
d(r2)=_ dt (5.49)

and

r2=_R12ut=_R12u x
L Lot

(5.50)

From(50)and(45)

2

x2- = rl =rex =x
R 2 --_-X 0_

(5.51)



_____L=Pf_L(R2_:)
mr0 = 1--rL I-_

pf _rL R 2 R 2 = (5.52)
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and so,

moR 2 rno[ 4R 2 12R2J • +

4 12 12 4

(5.53)

fromwhich we have

12 2 (5.54)

Similarly,

)-f=Jf =_(R2+,.2)
mnR2 mO--2R2 -=('l-'r)-_ =_ (5.55)

and

(5.56)
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Because (see Fig. 2)

c=12+LI2 (5.57)

we have

C'=0 (5.58)

and

2gcc'=0 (5.59)

From (10) and (57)

I.tc 2 _(mf/mo)(Ms/mo)(t2+L/2 _ (1-x)_ /_ , 2moR 2 mftmo+Ms/mo" R -(fL-xx+_)_°2"2 _)
(5.6O)

so that

I,I,' c 2 _r2 ( _)2
mo R2- (I-x+V) 2 _+

(5.61)
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(20) yields

.... g'c 2 2 _t'c c'
I =If+ _---

moR 2 mo R2
(5.62)

We thus have, from (62), (54), (61) and (59) that

(i' =_8"_t_ __ 82+
12 2 (V+I ,02

(5.63)

Similarly, (21) and (56) give

JB _l

J =- Jf =-x (5.64)

Now (see Fig. 2),

R R
(5.65)

and (52) leads to
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m (5.66)

Hence,

(5.67)

and (35), (63) and (67) yield

(5.68)

In the same way, (36), (64) and (66) give

(5.69)

5.3.1 Spin Rate Analysis

From (69), the function 0(x) is a linear function of "1:; it has a slope of-1 and is

_/ _/positive and equal to 2 at q: = 0, and is equal to 2 - 1 at "t: = 1. Fig. 3 shows O

for various values of 13.
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0

I

1

Fig. 5.3 The function 0 for centrifugal burn

We conclude from the figure that the spin rate always decreases at the beginning of the

burn. If 13>- ":2", the spin rate continues to decrease all the way to burnout. For 13< _2, the

spin rate bottoms out during the burn, and then increases during the later phases of the

burn. The turning point for this latter case occurs at

o  +132/=- 2=0 (5.69)

That is, at

x = 132/2 (5.70)
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This result is consistent with, and augments that obtained for the cylinder, for which 13 = 1

[ see (4.57) and Fig. 4.8]. The same result is validated by Fig. 4, obtained by numerical

integration of (40).

-0.0 0.2 0.4 0.6 0.8
T (norm_|ized time)

.0

¥=2

ct = 0.01

8= 10

6t=2

"_t = 1.2

y2=l

Fig. 5.4 Centrifugal burn" the effect of expansion ratio I_ on spin rate

5.3.2 Transverse Rate Analysis

From (68), the slope of the function ¢('t) is

0' = 1 2V2 (82+
-- 2 OOrg 1--_g)3 "_-2)2

(5.71)

and remains negative throughout the burn.
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At ignition ( "1: = 0 ),

_T) V2¢o= 82+ 6f_+8,8+ (82 + _2)2
(_/+1)2

(5.72)

and atburnout ( "I:= 1 ),

_1 82 +82+6 51 5 + --21" --(52 + 2) (5.73)

It is clear from (72) and (73) that % > (h, and that it is possible for any of these quantities
t

to be negative or positive. These facts, coupled with the fact that 0 is negative, mean that

the three scenarios depicted in Fig. 5 ale possible, depending on the values assigned to the

parameters.

°_ II1

Fig. 5.5 The function _ for centrifugal burn
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We concludefrom Fig. 5thatthemagnitude of the transverse angular velocity for

centrifugal bum can (i) decrease from ignition to burnout, (ii) decrease initially, then

diverge later, or (iii) increase from ignition to burnout, depending on system parameters.

Factors such as the distance of the exit plane from the combustion chamber (51), shape
..

factor of the propellant grain (_5), location of the propellant grain (82), nozzle expansion

ratio ([5), and the relative amount of propellant in the system (_), all affect the transverse

angular velocity. The main difference between the general axisymmetric system being

considered here and the variable mass cylinder considered in chapter 4 is that case (iii) in

Fig. 5 does not exist for cylinders. In other words, the transverse angular velocity of a

variable mass cylinder always decreases initially, while a general axisymmewic system can

exhibit divergent transverse rate throughout the propellant bum. Fig. 6 shows the

transverse angular velocity magnitude as obtained by numerical integration of (39).

_D

m-

_= I0

o_ = 0.01

5t=3

TI = 1.2

y2=l

Fig. 5.6 Centrifugal bum : the effect of various _5 on cross-spin
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5.4 Uniform Burn

We recall that in uniform bum, the dimensions of F remain unchanged, while its

density decreases continuously with time - see Fig. 7. In this case., mf has the same

expression as mr0 in (42). This expression and (44) lead to

! 12 _-

iiiiii!iii!i!iiiiiiiii  iiiiiiiiiiiiiii!iiiiiii

iiiiiiiiiiiiiiiiiiiiiiii_iiiii_i!iii!iiiiiiiiiiiiiiiiiii_i_i_ii_i_i!_!_!_ii

!

"1

U

Fig. 5.7 Uniform Bum

dm(=l_fnLR2=-& Pn R12u (5.74)

Hence

:)f 2 tf0d(pf)=-p R2LJo dt

(5.75)
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so

R12ut
Pf= Pro- P R2L

(5.76)

From (74) and (76)

mf= Pfo_ R 2 L- p x R 2 u t (5.77)

rne = peon R2L-p _ R_ut

mfo Pro _ L R2
= 1--(zt= 1-x (5.78)

and so,

m,, R 2 mo [.4 R 2 12 R2J 12
(5.79)

from which we have

(5.80)

_f_ Jf _mr R2 - 1-x
mo R 2 mo 2 R 2 2

(5.81)
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and

j_ =_1.
2

(5.82)

As before (see Fig. 7),

c =g2+L/2 (5.83)

c'=O (5.84)

and

2p, cc'=0 (5.85)

From (10) and (83)

_tc2 (mf/mo)(IVls/mo). (g2+L/2) 2_ (l-f)_ {82+mo R2 = mf/mo + Ms/mo R -- (1"--_+_q/) _)2
(5.86)

and

t'c2 V2 ( 2_)2
m,,R-----2= (I_,_+V) 2 _2+

(5.87)

We thus have, from (62), (80), (85) and (87) that
.?
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(V"+ 1 - x)2
(5.88)

Similarly, (21) and (82) give

--i --t

J =-Jf =- 1/2 (5.89)

Now (see Fig. 7),

and (78) leads to

Hence,

ge = _'J" + 9.-_R = _R R +_"7

m'mid = m'_ - =- 1

(5.9O)

(5.91)

(5.92)

and (35), (88) and (92) yield

_('_)=q52+_2+_518+6 -4I" (_+i-,t)2(82+-8-2-2}2
(5.93)

In the same way, (36), (89)and(91)give
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(5.94)

5.4.1 Spin Rate Analysis

From (94), the function 0(x) is a constant. Fig. 8 shows O for various values of

O

13>1

13=1

13<1

Fig. 5.8 The function 0 for uniform burn

If 13> 1, the spin continues to decrease all the way to burnout. For 13= 1, the spin rate

always equals its initial value. For 13< 1, the spin rate increases from the beginning to the

end of the bum. The same result is validated by Fig. 9, obtained by numerical integration

of (40)
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u'1
oq

(:3

-0.0

/

0.7 0.4 0.6 0,8 1.0
T (norm_t_ized lime)

¥=2

Ot= 0.01

8= 10

8t=2

82=3

Yt = 1.2

y2=l

Fig. 5.9 Uniform Bum" the effect of expansion ratio 13 on spin rate
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5.4.2 Transverse Rate Analysis

From (93), the slope of the function ¢(x) is

, 2_ 2 (_2 + _2)2¢ =-(v + 3
(5.95)

and stays negative throughout the bum. At ignition ( '1; = 0 ),

(5.96)
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and at burnout ( "t: = 1 ),

(5.97)

Hence _b0> _l, always, and either of these quantities can be negative or positive. Since we
t

also have that _ is always negative, we have the same scenario obtained for centrifugal

bum. Numerical simulation results provided in Fig. lO below confmn these inferences.

o
LO

Lo

.-2-

0

_xyO

o

o"
-0.0

/

20_

A
/

/

/

I

[

0.2 0.4 0.6 0.8 L.O
T

¥-- 15

B"I

= 0.01

Si=3

Yt = 1.2

72=1

Fig. 5.10 Uniform Bum" the effect of 8 on cross-spin
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CHAPTER 6

FORCED MOTION
OF AXISYMMETRIC SYSTEMS

All the development of the last two chapters have been restricted to systems

subjected to zero external torque. The only forcing function present has been a perfectly

axial thrust, whose line of action passes through the system mass center at all times, and

thus produces no couple on the system. Great pains are taken in the design of real rockets

to minimize thrust misalignments. Yet, it is unrealistic to expect that the sys_m mass

center, which generally moves during rocket burn, will remain positioned on the line of

action of the resultant thrust vector throughout the propellant bum. Thus, torques due to
.?

thrust misalignment are often inevitable. There are also other potential sources of

extranexms torques on a rocket system in flight, including aerodynamic and gravitational

moments. For this reason, we will, in this chapter, develop relationships that describe the

effects of externally applied moments on the attitude behavior of the same axisymmetric

variable mass system that was studied in the previous chapter.
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The equations of forced attitude motion of the system of Fig. 5.1 are really the same

as (5.17)-(5.19), except that the right hand side of each of these equation is non-zero.

Thus, we have

I ¢bx +( J-I ) toy ¢X_z+[ I-tilf( _2 + R12/4)] 0)x__ Mx (6.1)

I ¢by-( J-I ) COx¢Oz+[ t-rhf( l 2 + R2/4 )] o_ -- My

.?

J tbz + ( Jr- lilf R2/2 ) t_ = Mz

(6.2)

(6.3)

The forcing functions Mx, My and Mz are, in general, functions of time. This is so

because at least the contributions from thrust misalignments vary with time since the system

mass center moves relative to the system base structure.

We start the solution process by letting

_,2 = {Jr- rhfR12/2) / J (6.4)

and

Mz = Mz / J (6.5)
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(3) then becomes

dct_z + X2(t) c0z = Mz (6.6)
dt

The general solution of (6) is

(6.7)

This solution can be thought of as the sum of two components : a first term that represents

the homogenous part due to initial condition, and a second term - the particular solution -

that is contributed by the forcing function. If J, jr, rhf and Mz are known functions of

time, and the initial spin rate is known, (7) determines uniquely the spin rate ¢x_zof the body

S. Note that ¢Ozdepends only on 2L2and Mz, and is independent of Mx and My. This is

true because of our assumption of axisymmetry.

We are now ready to investigate the transverse angular velocity components of the

system. To this end, we introduce the following complex quantities"

¢.Oxy= COx+ j oh, (6.8)

Mxy = Mx + j My (6.9)
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where

We also define

j = (6.10)

)'.l : [i- tiaf(t*2 + R2/4)]/I (6.11)

o=(J-I)/I (6.12)

and

Mxy = Mxy / I (6.13)

Adding j ILrnes (2) to (1), we obtain

I ¢J_xy- j (J - I) 0._z(j ¢0y + ¢.0x}+ ),.1 ¢t_xy= Mxy (6.14)

Or
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d_xy
dt + P2(t) tOxy = Mxy (6.15)

where

P2(t) = Xl- o (J)z (6.16)

The solution to (16) is

(6.17)

or equivalently,

cox + j toy = {O_o + j toyo + _ot [Mx(s)/I +j My (s)/I]

{ex_F (s)]} [cosO(s)-j sinO(s)] ds} {exp [- F (s)]} [cosO(t)+ j sine(t}]

(6.18)

where

(6.19)

and
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(6.20)

The functionsI_t)and O(t),which have fundarncntallydifferentpro_rfics,govern the

characterofthe transversemotion of thevariablemass system under consideration._t)

determinesthe amplitudeof theangularmotion and O(t)affectsmotion frequency. Explicit

formula for COxand COycan be obtainedfrom 08) by separatingtherealand imaginary parts

of theexpression;they arc:

cox(t) = e- r (t)[ox o cosO(t)- coyo sinO(t)] +

(6.21)

f_ e [r (') - r (t)]{M, (s) cos_O(s)- O(t)] + My (s)silO(s)-O(t)]} dsI

and

_t)= e-r (t)[_osinO(O+_o co,O(t)]+

e[r(s)-r (t)]{My (s)codO(s)-O(t)]-Mx Is)silO(s)-O(t_} (is
I

(6.22)

We observe that in general the spin torque, Mz has no effect on the transverse angular

velocity, nor is the spin rate affected by any of the transverse torques.
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6.2 Change of the Independent Variable

We now introduce a new independent variable in order to simplify somewhat the

equations of attitude motion and their solution. We exploit here, a transformation defined

earlier and first proposed by Jarmolow (1957) :

e(t)= _ d_= COz_d¢ (6.23)

0, has the dimension of angle (radians) and is related to the spin angle. It will be used as

the new measure of time.

Note that
-?

dO = Ct_z{_ dt (6.24)

SO

d =¢.Oz (J" - I*) d (6.25)
dt I* dO

The starred quantities are assumed to be expressed in terms of the new variable O. This is

indeed possible because (23) gives 0 as a function of t, and can be inverted to yield the
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expressionoft as a function of 0. Equations (1) and (2) can be rc-writlvn in terms of O as

follows :

- .t_ 2 + O)z COx= l_x (6.26)
dO

¢Oz(J*- I*)dcth'-(dO J*- I* )COx¢Oz+[dI*kdO dm_d_O(t:2+ R21/4)] (J*-_ I*) o_z _ = l_y (6.27)

Dividing through by (J* - I*) (Oz, one obtains

[. . /4)]d__+coy + dJS__dmf (te2 + R 2 (tk _ 1_ X
de Lde de I" 0)z (J* - I')

(6.28)

and

¢t_t+ R21/4 COy l_y

dO LdO dO I* (t_z(J* - I*)
(6.29)

Then, multiplying (29) by j and adding to (28), we have

dO
(6.30)
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wh¢l'c

_,(o)=,_(o)+j_o) (6.31)

"" I/i_ =[di-__(_:_ +R_/_
kdO dO *

(6.32)

and

(6.33)

ifw_d_o:(o)as

(6.34)

thenthe solutionof (30)for COxand COyin_rms of thenew variable9 can be written

explicitly as

COx(0)= (_o cosO-_: sinO)e -r* (0) .+

e [r" (s)- r" (o)]_z_'-?i [_(_)co__o)+g(s) si_s-o)]e

(6.35)
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,_(o)=[,_o,_o+_ co,o]e r"(o)+

fo° c[l"*{s!-I'_{O)][I_fy(s)c°s(s-O)-l_x(s)sin(s-O)]dsc0z(J-I)

(6.36)

In order to obtain explicit expressions for the known functions such as I, J, Mx and

My, the function t(O) must be determined. This may or may not be a trivial task. The

integrand of (23) is a rational function of time whose integral may not have a closed form

analytical expression. However, a numerical solution is always possible, so we can be

sure that the complete solution sketched above can always be obtained by numerical means

- at least.

6.3 Special Case - Rigid Body Motion

The above solution can be used to investigate the altitude motion of an axisymmetric

rigid body simply by setting

(32)and (34)then yield

dI* = d.r = dmf = 0 (6.37)
dO dO dO

F*(O)=0 ' (6.38)

and (35)and (36)simplifyas follows
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cox (0) =(¢oxo ¢osO- o._o sinO) + ..

1 [l_x (s)cos(s- O)+ l_y (s)sin{s- 0)] ds
¢Oz(J" - I')

(6.39)

coy (0) = [¢OxosinO + ¢OyocosO] +

I; O)z(J* - I*)

(6.40)

In this form, the physical significance of the various parameters of the problem is not so
.?

obvious. Simpler and more revealing expressions for COxand o.b, are obtained for the case

of constant body-fixed torques. For instance, ff we take Mx and My to be constants, and

Mz = 0, (39) and (40) further simplify to

¢os(o)-,,,yosin(O)]+

1 {l_x sin{O)- l_y[1- cos(O)]}
(J" - I*)¢OzO

(6.41)

_y(O) ;[¢Oyo cos(O) +¢Oxo sin(O)] +

1 {l_y sin(O) + l_x[1-cos{O)]_.
(J* - I*) ¢OzO

(6.42)

where
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0 (t)= -_ _)zOt (6.43)

We noteherethatthespinrate remains constant at its initial value, as can be seen

from (4), (5) and (7). (41) and (42) indicate that transverse velocities increase with

u'ansverse torques and decrease with the inertia difference, J* - I*, and initial spin rate.

Spinning a rigid body about one of its principal axes provides the so-called spin

rigidity or gyroscopic stiffness; that is, a resistance to external disturbances during motion.

This is the well known advantage of spin stabilization. In a spin stabilized system, the

transverse angular rates COxand cA/ axe usually the result of unforeseen disturbance, and

are generally undesirable. If Nix and My are viewed as constants, body-fixed disturbance

torques in (41) and (42) above, then, these equations show clearly that high spin rates will

reduce the effects of the disturbance torques on vehicle motion. This indicates that the

nominal spin rate of a spin stabilized vehicle should be given the highest value compatible

with the vehicle's structural integrity. A fact that agrees with physical intuition. It can thus

be said that as the spin rate increases, the stability of a given system increases as measured

by the reduction in angular rates introduced by a given disturbance.

For a single spinning body, (41) and (42) also show that gyroscopic stiffness

depends in a crucial way on the system inertia property, J* - I*, or the difference between

the spin and the transverse moment of inertia of the body. Spin rigidity vanishes as the

inertiadifferencetendstozero.Inotherwords,bodieswith sphericalsymmetry can have

no gyroscopicstiffness,irrespectiveof thevaluethe spinrate.On the otherhand, heavily

prolateor oblatebodiesarcseen tobe quitestableinspin.
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CHAPTER 7

CONCLUSION

The study presented in this report deals with the dynamic behavior of spinning

bodies that lose mass while in motion. The study began with the determination of the

complete equations of such systems using one of the most powerful methods of analytical

dynamics m Kane's formalism. The resulting equations are then applied to the study of

the attitude dynamics of space-based variable mass systems using mathematical models that

vary from a simple cylinder to general axisymmetric systems. The emphasis of these

efforts was on information extraction. Special mathematical techniques were used to

extract as much information as possible about the motion of the system, without actually

attempting a full solution of the equations of motion. .:

In the first example presented, a variable mass rocket system is represented by a

simple cylinder with four possible mass loss scenarios. Results obtained indicate that such

a system can fly stably in a torque free environment if the ratio of the radius m the length is

small. Large and short cylindrical vehicles can have stability problems, especially if they

are subjected to radial bum. This study goes far beyond previous work in this area by

clearly identifying the exact inertia conditions and the precise stages of vehicle motion at



which the character of motion begins to change. For cases where there is stability issue,

limiting values of motion parameters are determined.

Attention was next mined to a slightly more complicated model -- a general

axisymmetric variable mass system. Although important differences were found in the

details of the motion of the general axisymmetric system as compared to that of the simple

cylinder, the main stability results did not change. It was found in this second example,

that in addition to the shape factor of the system propellant, the location of the propellant

grain within the system as well as the nozzle expansion ratio all have significant effects on

the attitude motion of a rocket.

In the last section of this study, the combined effect of mass loss and external

transverse torques on system motion is examined, and solutions to the equations of motion

in this case are presented. Overall, this study augments considerably, previous knowledge

of the dynamics of variable mass systems and gives great insight into the effects of mass

variation on the attitude behavior of spinning bodies.

This study shows precisely how the system's auimde response is tied to such

system parameters as nozzle geometry, combustion chamber geomelxy, location and

relative mass of the propellant. In this sense, the study will be of great use to designers in

that it indicates what must be done to avoid motion instability of the type witnessed in the

80's on Star 48 propelled space vehicles.

117
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